If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5n^2+1.5n+1=0
a = 0.5; b = 1.5; c = +1;
Δ = b2-4ac
Δ = 1.52-4·0.5·1
Δ = 0.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.5)-\sqrt{0.25}}{2*0.5}=\frac{-1.5-\sqrt{0.25}}{1} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.5)+\sqrt{0.25}}{2*0.5}=\frac{-1.5+\sqrt{0.25}}{1} $
| 9m+23=10 | | 2*2.7182818284590452353602874713527^x=2*(2.7182818284590452353602874713527^-x)+5 | | 2(3c+4)=4(5c-2) | | 2(2m+3)+3(m-5)=14 | | 4(2a+3)+3(2+3a)=19 | | 4(2c+3)=3(-3c+6) | | 2x-10=6x+20 | | 4b+3=2b+5 | | X×2×x=168 | | p+9=2{5-p} | | 9/4x-4=x/2+10 | | t2-10+25=0 | | 2x+1/3x+13=x-3 | | y(5)10y+9y=0 | | 3-3m=17 | | P2=7p+12=0 | | (1.05^x)=2.5 | | 9e+15=42 | | 3x+4=2(1-x) | | -3=2x=9 | | 14=3x=5 | | ⅞+x=24 | | x+x+32+32=360 | | x-1⅕=5½ | | g-11=5-3g | | 7x+×=48 | | X+15+g=180 | | x/5=3,4 | | 4x(x)+5=-3 | | 1.5^x-20x=100 | | 1.5^x-20=100 | | (x)-11=19 |